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The analysis of unsteady free convection has classically been made difficult because 
of the singularities which occur in the governing boundary-layer equations, and 
because anomalies often occur which are related to the occurrence of these singula- 
rities. In the present paper a semisimilar analysis of unsteady free convection in the 
vicinity of a vertical flat plate is presented, wherein a number of possible wall- 
temperature variations with time and position are derived. Unique scalings are 
formulated for the semisimilar equations that aid in the numerical solutions and in 
the physical interpretation of the results. These scalings collapse the infinite time and 
position coordinates into a finite region, and present the semisimilar problem in a 
format bounded by similarity equations. Solutions are carried out which indicate the 
occurrence of overshoots in the temperature profiles and heat transfer for a variety 
of conditions. Also, concepts such as the ' limit-of-pure-conduction ' and ' leading-edge 
penetration distance ' are shown to require special interpretation under variable 
wall-temperature conditions. 

1. Introduction 
Buoyancy-driven flows have become important in recent years as both a distinct 

category of fluid mechanics and an area of convective heat and mass transfer. Studies 
of such flows have been carried out in various flow geometries and with various 
boundary conditions and fluid properties. Historically, analyses were carried out on 
a boundary-layer basis and mostly addressed applications involving external 
transport of a steady-state nature. Today, these boundary-layer studies have largely 
given way to computer simulations of the more general multi-dimensional enclosure 
flows of steady natural convection. Many problem areas, however, which are uniquely 
of a classical boundary-layer nature and which are important in applications, as well 
as in theory, still persist. Free-convective flow which is unsteady is an example of 
such an area which has yet to be fully described either analytically or computation- 
ally, in either full formulation or in the conventional boundary-layer formulation. 
A unique feature of these external unsteady flows is that sometimes they are similar, 
sometimes non-similar, and sometimes even non-boundary layer, and their character 
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can change with the time dimension of the problem. In the present paper an analysis 
is presented which describes some of the unsteady characteristics of one such problem, 
the classical free-convective boundary-layer flow in the vicinity of a vertical surface. 

The basic problem of two dimensional steady-state free convection about a 
semi-infinite flat plate was first formulated by Schmidt & Beckmann (1930). For this 
problem, similar solutions to the momentum and energy equations exist. Ostrach 
(1953) presented numerical solutions of the reduced equations. Wall-temperature 
variations which yield similar solutions for the steady case were investigated by 
Finston (1956) and by Yang (1960) and numerical solutions for several of these 
wall-temperature distributions have been obtained by Sparrow & Gregg (1956,1958). 

When the assumption of steady-state wall-temperature distribution (steady flow) 
is removed, the complexity of the problem increases dramatically. Not only is the 
mathematical problem made more difficult by the introduction of a third independent 
variable (time), but the physics of the problem is complicated by a dual behaviour 
of the temperature and velocity fields. Consider the case in which a semi-infinite plate 
is heated impulsively to a constant temperature higher than that of the surrounding 
medium. A t  a given point on the plate, during the early phase of the flow 
development, the temperature and velocity fields develop as if the plate were infinite 
in extent for there is no mechanism by which the presence of the leading edge can 
be transmitted instantaneously up the plate. Illingworth (1950) has shown that in 
the case of an impulsively heated infinite plate the temperature field develops in the 
same manner as the temperature field in a semi-infinite solid whose surface is 
impulsively heated. That is, for the infinite plate, the heat transfer is by one- 
dimensional conduction only. The velocity field develops in a manner analogous to 
the development of the velocity field over an impulsively set into motion flat plate 
(the Rayleigh problem) . 

Once the signal from the leading edge reaches a given position, the flow and heat 
transfer at that position begin a transition ending in the steady state which is 
described mathematically by the well-known similar solution of Schmidt & Beckmann 
(1930). If the signal from the leading edge does not travel fast enough, a very 
interesting phenomenon may occur. The boundary-layer thickness due to the 
one-dimensional conduction may become thicker than the steady-state value it will 
reach at a later time. This causes a minimum in the heat transfer coefficient which 
will subsequently approach the steady-state value from below. 

Virtually all the investigations of transient free convection at the surface of a flat 
plate have considered the case in which the plate is impulsively heated to a constant 
temperature. Despite repeated efforts, however, no completely accurate analytical 
or numerical solution to this problem has been found. Early numerical transient 
solutions were published by Hellums & Churchill (1962) for the impulsively heated 
constant-temperature flat plate and Callahen & Marner (1976) for the same problem 
with mass transfer. These authors used the same method of solution in which the 
governing equations are solved in three independent variables as an initial-value 
problem using finite differences. Both of these solutions indicate a minimum in the 
heat transfer coefficient, but are suspect because they indicate a departure from the 
one-dimensional conduction solution well before the critical time given theoretically 
by Nanbu (1971) and generally accepted as accurate. Indeed, in a recent paper 
Ingham (1978) suggests strongly that difficulties exist in these numerical solutions. 
Ingham reproduced the method used by the above authors and reproduced their 
results for the same finite difference step size. However, as the step size was reduced 
the results were found to diverge. 
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I n  more recent numerical studies it was thought that  the impulsively heated plate 
problem of free convection would be analogous to  the impulsively started flat plate 
problem of hydrodynamic boundary-layer theory studied by Stewartson (1951), 
Dennis (1972) and Hall (1969). However, all attempts to use the numerical methods 
which work for the impulsively started flat-plate problem failed when applied to the 
impulsively heated plate problem. Numerical solutions have recently been attempted 
by the present authors (unpublished work), by Walker, Abbott & Yau (1975), and 
by Ingham (1977) but to no avail. All of these attempts used proven numerical 
techniques satisfactory for the impulsively started flat-plate problem. Ingham also 
points out that  Dennis, Elliot, and Brown & Riley, have all attempted numerical 
solutions in unpublished works, without success. A very interesting technique of 
treating singular parabolic problems was recently presented by Wang (1983, 1985), 
in which numerical procedures commonly employed for elliptic equations were 
adapted to singular parabolic equations. Such a solution technique, however, has not 
been applied to the coupled equations of free convection. 

The only analytical results for the impulsively heated transient flat-plate problem 
are given by Brown & Riley (1973). They obtained series solutions valid for small 
or large values of the similarity variable 7 = t / d .  No solution was obtained for 
intermediate values of r where a minimum in the heat transfer coefficient would occur. 

A number of investigators have solved transient free convection problems using 
approximate methods. Sugawara & Michiyoshi (1951) use the method of successive 
approximation but the second approximation was only carried out for short times. 
Siege1 (1961) used the method of characteristics t o  solve the transient free convection 
equations in the von KBrman-Poulhausen integral form and obtained a solution 
which clearly indicates a minimum in the heat transfer coefficient. Siegel’s solution, 
however, indicates a much shorter limit of pure conduction than is usually accepted 
as accurate. Gebhart (1961), also using an integral method, treats the more realistic 
condition of a plate with arbitrary thermal capacity. His results, however, indicate 
no minimum of the heat transfer coefficient for a plate with an impulsively applied 
constant heat flux a t  the surface and no thermal capacity. Finally, Heinisch, Viskanta 
& Singer (1969) reduced the number of independent variables in the equations 
governing transient free convection by successive integration. The resulting ordinary 
differential equations were solved for both the impulsive temperature and heat flux 
cases. The solutions indicated a minimum of the heat transfer coefficient, but 
instabilities occurred in the transient region. 

In  summary, while the analysis of free convection has developed to  some extent 
in recent years, many fundamental aspects of transient flow characteristics still 
remain to be described. I n  the classical cases of the semi-infinite vertical plate heated 
impulsively to a uniform temperature and impulsively heated at constant and 
uniform heat flux, developments of reliable and complete solutions have been 
impeded because of the essential singularities associated with the leading edge. 
Additionally, these mathematical and numerical difficulties have carried over as 
impediments in the development of other transient free convection solutions. Data 
on such additional questions as the effects of variable wall temperature and 
streamwise conduction in unsteady flow, in particular, are not yet available for this 
geometry. 

I n  the present work the more general case of a semi-infinite flat plate for which 
the wall temperature varies with time or with position or with both time and position 
is addressed. The mathematical technique used in the present analysis is the method 
of semi-similar solutions, in which the number of independent variables is reduced 
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from three to two by an appropriate scaling. The resulting transformed equations 
are then solved by standard numerical methods developed for solving problems in 
two independent variables. Using this technique, complete transient solutions are 
obtained for certain cases where the wall temperature varies with position. All of these 
transient solutions exhibit a minimum in the heat transfer coefficient before reaching 
the steady state. Complete unsteady solutions are also obtained for a class of wall 
temperatures varying with time and position. Partial solutions are found for certain 
other wall-temperature variations, and the numerical difficulties with these solutions 
are traced to a singularity in the equations introduced by infinite wall-temperature 
derivatives at  the leading edge of the plate. The results are believed to be benchmarks 
which potentially are of importance in future numerical studies. 

2. Analysis 
The heat transfer and fluid motion that occurs in the fluid adjacent to a 

semi-inhite, vertical flat plate which is heated in an unsteady manner is of primary 
interest. The fluid heat transfer and motion is described in a rectangular coordinate 
system attached to the plate such that the z-axis lies along the plate surface and the 
y-axis is normal to the plate. The 1 and 3 components of velocity are U and 5, 
respectively, and the fluid temperature is F .  It is assumed that the difference between 
the plate temperature and the temperature of the surrounding medium is everywhere 
small, the heating due to viscous dissipation can be neglected, the fluid can be 
considered incompressible except that the changes in density are important in 
producing buoyancy forces, the Boussinesq approximations are valid, and the 
kinematic viscosity, v, and the thermal diffusivity, a, may be taken as constant. 
Under these circumstances the equations of continuity, 2 momentum, and energy, 
in the thin viscous layer adjacent to the wall become 

- 

Here, as usual, 5 is time, go is the acceleration due to gravity, B is the coefficient of 
thermal expansion of the fluid and Tm is the temperature of the surrounding fluid 
(at a large distance from the plate). The boundary conditions are 

- u(X, 0, t )  = ?(if, 0, t )  = lim Z(z,y,t) = 0, 

T(z,  0, t )  = TJZ,  f) for f > 0, 

?7+0 
- 

lim T(~ , j j , t )  = Tm. 
g+m 

Various initial conditions will result from the semi-similar analysis. 

indicate no reference velocity. Ostrach (1953) suggests the characteristic velocity 
It is noted that the velocity boundary conditions are homogeneous and thus 

u = [gOBmfEef-Tm)It. 
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Non-dimensional Grashof and Prandtl numbers are defined respectively by 

PT = @/z, 
where L is some arbitrary reference length, Tref is some arbitrary reference temper- 
ature, p is the absolute viscosity, ?? is the specific heat and E is the thermal 
conductivity. The following non-dimensional variables are now introduced : 

m , t = -  (@)% 
L’ Y ’ T  L ’  

- 
X x = -  

v = (Gr)fV/U. 

In  terms of these non-dimensional variables the equations of motion and energy, 
(1) to (3) become 

au av -+- = 0 ,  
ax ay 

-+u-+v  - = A T + -  
au au au a2u 
at ax a y  ay2, 

aAT aAT aAT 1 P A T  
-+v -+U -- 
ax ay PT a y 2  at 

and the boundary conditions become 

u(z, 0 ,  t )  = v(x, 0, t )  = 0, 

(4) 

(7) 

lim u(x,  y ,  t )  = 0,  
Y+W 

AT(x ,  0 ,  t )  = ATW(z,  t )  (t > 0) ,  

lim AT(x ,  y,t) = 0. 
u+m 

Equations (4) to (6) are a coupled set of second order, nonlinear partial differential 
equations in three independent variables. The techniques presently available for 
solving coupled equations in three independent variables are quite limited. Here, the 
technique of semi-similar solutions is employed. In  semi-similar solutions the number 
of independent variables is reduced from three to two by an appropriate scaling. This 
allows the use of fast and accurate numerical techniques in the solution of the reduced 
equations. The use of the method of semi-similar solutions is not without some 
penalty. Not all wall-temperature distributions, ATw(z,  t ) ,  lend themselves to semi- 
similar solutions, as will be seen shortly. Thus, solutions to the problem posed above 
can be obtained only for a limited number of classes of wall-temperature distributions. 
Nevertheless, investigation of these wall-temperature distributions for which semi- 
similar solutions are possible yields new information on the physics of the complicated 
flows of unsteady free convective heat transfer, as well as accurate results which can 
be used for limit checking more complicated and unproven numerical procedures. 
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In order to obtain the required reduction in the number of independent variables, 
we introduce the new scaled coordinates 

11 = Y / 9 ( X 9  t ) ,  5 = 5 ( x ,  % 
and a non-dimensional stream function f ( t , ~ )  defined by 

where the stream function $ is related to the fluid velocity components in the usual 
manner, i.e. 

In addition, a new dimensionless temperature, defined by 

6 = AT/AT, 

is introduced. The functions g ( x ,  t )  and t(x, t )  in the new scaled coordinates and the 
function k ( x ,  t )  in the definition of the stream function are, at  this point, not specified. 

The continuity equation is identically satisfied by the introduction of a stream 
function. In terms of the new variables, the momentum and energy equations become 

ae bqae  ae I ate 
Pr aq2 a7 2 all a t  

+ ( d + e ) f - + - - - c - + h  -- 

where 

e = - -  k ag2 h = g 2 k - - ,  a6 j = - A T , ,  g2 
2 ax’  ax k 

kg2 aAT, m = - -  g2 aAT, l = - -  
AT, at AT, ax . 

(10u-d) 

(10 h, i) 

The boundary conditions, written in terms of the new variables are 

O ( t , O )  = 1, lim O(<, 7) = 0. 
v-+m 

If semi-similar solutions are to exist and the problem in the new coordinate system 
is to be a problem in only two independent variables ( c , q ) ,  then the coefficients 
defined in (10) must be functions of ,$ alone. Clearly this puts some limitation not 
only on the scaling functions g ( x , t )  and k ( x , t ) ,  but also on the wall-temperature 
distribution AT,. 

Four equations relating the nine coefficients defined in (10) are obtained on the 



Semisimilar analysis of unsteady free convection 315 

basis of the continuity of the second derivatives of 9, f ,  k and AT, with respect to 
x and to t .  These equations are 

I 
( a + b ) d  = 2ae+cd'-a'h, 

2ae = 2ce' - hb', 

h(a+b+c') = c(h'+2e), 

l'h-21e = m'c-m(a+b),  

where primes here denote differentiation with respect to f .  We note that the analysis 
to this point is analogous to that of Williams & Johnson (1974). 

It would be desirable to use a direct approach to solve this problem, an approach 
in which AT, was specified and the scaling functions are obtained from solutions of 
(10) in conjunction with (12). Such a direct approach is not possible, indeed not all 
possible functions for AT, yield semisimilar solutions. It is necessary then to use an 
indirect approach to determine the AT, s for which semisimilar solutions are possible 
and the scaling functions appropriate to each of these functions. Three cases are 
considered separately in which (i) AT, varies with time alone, (ii) AT, varies with 
distance alone and (iii) AT, vanes with both time and distance. 

(i) Wall temperature varying with time alone 

solving for k yields 
For this special case clearly the coefficient m is zero. Forming the ratio l / j  and 

(13) 
4AT,)2 

j(am,/at). k =  

Introducing this result into (10a) one finds that the ratio 

AT, a2AT, 
(aAT,/at)z ' at2 

must, at  most, be constant. Setting this ratio equal to a constant and solving for AT, 
results in two solutions 

AT, = (c1 t+cZ) ' ,  (14) 

(15) AT, = k,  ekz t ,  

where cl, c,, k,, k, and r are arbitrary constants. The correct functional forms for 
6, k and g must now be determined for each of these wall-temperature distributions. 

Turning attention first to the wall-temperature distribution given by (14), it is 
noted from (13) that since 1 and j are both functions of f above, k must be given by 

k = (cl t+c,)'+l F l ( f ) ,  (16) 

where Fl(E) is a t  this point an arbitrary function of 6. From (log) or (10h) one also 
obtains 

(17) 9, = (c1 t + c , )  F,(f), 

where F, is also an arbitrary function of f .  

5 in the (2, t)-plane are given by 
To determine the functional form of f we note that the slopes of the lines of constant 

11 B L M  175 
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Since c and h are functions of 5 alone they must be constant along lines of constant 
5. From (13), we obtain the relationship 

x / ( C , t + C , ) r + 2  = F3(5), (18) 

where F3 is again an arbitrary function of 5. This equation, then, gives the functional 
combination of 2 and t in 5. Equations (16), (17) and (18) now specify g, k and 5 to 
within the same arbitrary functions of a known combination of x and t .  

The arbitrary function of 5, F3($), is now chosen to give the most meaningful and 
computationally convenient form of (8) and (9). We note that in the physical problem 
the range of both the 2 and the t variables is from zero to infinity. Computationally 
it would be convenient to collapse this infinite range into some finite interval. If 5 
is chosen to be I 5 = l-exp{( - 4xi 

c, t + c2):(r+2) ' 

the range of 5 becomes zero to unity for real variations of both x and t. 
The arbitrary functions F,(t)  and F2(5) in the definitions of k and g2  (equations (16) 

and (17)) are now chosen in such a manner that (8) and (9) reduce to familiar similarity 
equations at  the end points of 5. If this is done, (8) and (9) become more easily 
interpreted physically, since the similarity equations are valid for known physical 
conditions. If F,(t) and F2(6) are chosen by inspection to be 5 and 45, respectively, 
g 2  and k become 

g2 = 4[c, t + c21t, 

k = [c, t + c2]'+' 6. 
The constants in k and g 2  have been chosen by experiment to keep the boundary layer 
essentially the same thickness, in the 7-plane, throughout the range of $. 

With k ,  g 2  and 5 now known, for this case, the coefficients a(,$-), b(5) ,  c([), d(E), e ( 5 ) ,  
h (E) , j ( t ) ,  Z(5) and m(5) can be determined so that the coefficients in the transformed 
equations of motion and energy are all known and the problem is now completely 
specified. It is easily shown that the resulting coefficients satisfy the auxiliary 
equations (12). It is interesting to note that the constant c2 in (14) for the wall 
temperature does not appear in the equations of motion. It is found that c2 must be 
equal to zero to give the correct initial condition (see below) for the problem. The 
constant c, may also be scaled out of the problem if it is non-zero, but is retained 
in order to examine the case when it is zero. 

For 5 = 0, (8) and (9) reduce respectively to the steady state type similarity 
equations 

For = 1, (8) and (9) reduce respectively to the one-dimensional conduction equation 

One of these sets of similarity equations will serve as the initial condition for (8) and 
(9). 
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Now consider the problem from a physical standpoint. The non-dimensional 
velocity in the viscous layer is given, in this case, by 

u = [ C 1 t + C J + l E - .  af 
a?l 

This velocity should be equal to zero for t = 0 at all x ,  and z = 0 for all t .  These 
conditions are satisfied only if c2 = 0. Thus, c2 is taken as zero for the remainder of 
the analysis. 

In the case in which ATw varies exponentially with time, (15), one can follow the 
same procedure outlined above to find the appropriate functions f ( x ,  t ) ,  g(x,  t )  and 
k(x ,  t )  together with the similarity equations which are appropriate at the end point 
of the range for E. These results are presented by Rhyne (1978). In  this case, however, 
AT, becomes zero only as t + -  a. This case does not appear to have great physical 
significance and thus is not treated further here. 

(ii) Wall temperature vaying with position alone 
For the case in which the wall temperature vanes with position alone, the 

coefficient 1 (equation (10h)) must be zero. Forming the ratio m / j  and solving for k 
yields 

Introducing the result into (10d) and making use of ( log ) ,  one finds that the ratio, 

AT, a2AT, 
(aATw/ax)2 ax2 ' 

must, at  most, be a constant. Setting this ratio equal to a constant, and integrating 
twice yields the two possible solutions 

AT, = (c, X + C , ) ~ ,  (23) 

AT, = k, ek&x, (24) 

were c,, c,, k, and k, are constants. Using the same procedure as was used in the 
previous case it is determined that, for the first of these cases (equation (23)) the 
functions g(x,  t ) ,  g(x,  t )  and k(x ,  t )  are 

6 = i-exp{-it(c,x+~,)f(~-1)}, (25) 

(26) 

(27 1 

g2 = 16[c3 x + ~ , l f ( l - ~ )  f ,  

k = 4[c, x + ~ , l f ( l + ~ )  f .  

As before, k ,  g 2 ,  and 6 are known for this case and the coefficients a( t ) ,  b(6),  c ( f ) ,  d ( f ) ,  
e ( f ) ,  h(6), j ( f ) ,  Z(6) and m(f )  are easily determined. 

For f = 0, (8) and (9) reduce respectively to the classical one-dimensional con- 
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The non-dimensional velocity in the viscous layer, in this case, is 

u = 4[c3 x+c4]f(1+n) (f(5). 
Again, the velocity should be zero for t = 0 at all x and at  x = 0 for all t. and again 
these conditions are satisfied only if cq = 0. Thus c4 is taken as zero as before for the 
remainder of the analysis of this case. 

When ATw varies exponentially with distance (equation (24))  the same procedure 
outlined above can be followed to find the functions f(x, t ) ,  g2(x, t )  and k(x, t ) ,  together 
with the similarity equations at the end points of the range for 6. These results are 
also presented by Rhyne (1978). In this case, however, ATw becomes zero only as 
x+- a. This case can be interpreted as the transient free convection near an infinite 
plate with an exponential growth in wall temperature for x > 0 and an exponential 
decay in temperature for x < 0. The corresponding steady-state problem has been 
studied by Gebhart & Mollendorf (1969). Because of its limited physical significance, 
this case is not treated further here. 

(iii) Wall temperature varying with position and time 

Finally, the general case in which the wall temperature varies with both position 
and time is considered. In  this case, the expression for k in terms of the ratio of m 
to j becomes 

On the other hand, if we form the ratio l / j  and solve for k, we obtain 

Introducing the first of these into the expression for d ( f )  (equation ( lOd)) ,  one fmds 
that ATw a2ATw - - - constant. 

(aATw/ax)2 ax2 

Introducing the second of these into the expression for a( [ )  (equation (10a))  yields 

constant. 
a2AT 

(aATw/at)2 at2 
AT! w= 

In addition, introducing the first of the above expressions into (10a)  or the second 
a2ATW - - - constant. ATW into (10d) yields 

(aATw/at) (aATw/az) axat 

There are three possible wall-temperature distributions which simultaneously 
satisfy (30) ,  (31) and (32) .  These are 



Semisimilar analysis of unsteady free convection 319 

and ATw = [c, X+C,  t]" (35) 

where c,, c2, c,, c,, k,, k, and k, are constant. It is noted that the cases discussed earlier 
are actually special cases of either (33) or (34). 

Following a procedure which is similar to, but more involved than, that in the 
previous section it can be shown that for the first of these cases (33) the functions 

6 = 1 - exp { - a[cl t + cz1+('+2) [c, z + c,];(~-~)}, 

g2 = 16[~, t + ~ ~ l - 4 '  [c, x + c,$('-~) E;, 

k = 4[c, t + c2$' [c, z+ ~,]:(~+l) 6. 
Since k, g2 and i$ are now known, for this case, the coefficients a(E;), b(E), c(E), d ( g ) ,  e(E), 
h ( l ) ,  j (c) ,  I ( [ ) ,  and m(6) given by (lo), can be determined along with the coefficients 
of the transformed equations ((8) and (9)). Again, it is easily shown that the resulting 
coefficients satisfy the auxiliary equations (12). 

&, t ) ,  g(x, t )  and k(z, t )  are 

For E; = 0, the following conduction type similarity equations are obtained 

For 6 = 1, the following steady-state type similarity equations are obtained 

a3f af a?f -+16c,(n+3)f---32c3(n+1) 
ay3 all aq2 

1 a2e ae af 
Pr aq2 a7 a7 

+ 16c,(n + 3) f - - 64m, e - = 0. -- 

The non-dimensional velocity in the viscous layer, in this case, is 

u = kf = 4[c, t + Cz]if [c, 2+ C,]i("+l)f'. 

Again this velocity should be zero for t = 0 at all x and at  x = 0 for all t .  These 
conditions are satisfied only if c2 = c, = 0, n > - 1 and r > 0, which are imposed 
throughout the remainder of this work. 

In the case where AT, varies exponentially with both distance and time (equation 
(34)) the functions E(z, t ) ,  g2(q t )  and k(z, t)  together with the similarity equations at 
the end points of the range of 6 are formed in the same way. These results are also 
presented by Rhyne (1978). In this case, the conditions at the leading edge of the 
plate (x = 0) cannot be satisfied and the problem must be given a special physical 
interpretation. Thus, this case is not considered further here. In the case where AT, 
is a linear combination of x and t ,  (35), it is also not possible to satisfy the physical 
conditions existing at the leading edge of the plate (u = 0 at x = 0 for all t and at 
t = 0 for all 2). Further consideration of this case, therefore, is also omitted here. 

In the preceding sections the wall-temperature distributions for which semisimilar 
solutions are possible have been determined and those which do not have physical 
significance eliminated. The scaling factors g(z, t )  and k(z, t)  were then determined for 
those cases which are physically realistic. Special care has been taken to construct 
6(z, t )  so that the infinite range of x and t in the physical problem is collapsed into 
a finite range in the transformed problem; i.e. 0 < 6 < 1. In  addition, we have 
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determined the similarity forms of the equations of motion and energy which are valid 
at the limits of the range of k ( E  = 0 and 1). Some of these will be used as initial 
conditions in the computational scheme. Attention is now focused on the problem 
of determining solutions to (8) and (9). 

3. Method of solution 
The reduced equations of motion and energy, (8) and (9), subject to the boundary 

conditions given by (1 1) were solved for the cases discussed in the previous section 
using an implicit finite difference method. It was convenient, at the outset, to rewrite 
(8) and (9) as a set of equations which are second order in a new variable W(7,E). 
In terms of W ,  (8) and (9) become 

aW 
W"+al  W'+a2 W + a 3  = a,-, aE (37) 

where primes denote differentiation with respect to 7 and the coefficients a1 and b1 
are given by 

a, = (d+e)f+-+hf b7 a2 = - d f - a ,  a3 =je,  a, = c + h f ,  
2 a" 

B1 = = Pral, p2 = Pr[-l-mf], 

b3 = 0 ,  8, = P r ( c + h f )  = Pra,. 

In terms of W, f and 8, the boundary conditions are written 

J e(6,O) = 1, lim 6(6,7) = 0. 
lra 

Writing the equations of motion in this form illustrates clearly the parabolic nature 
of the equations. If a, is positive, then the computation can start at = 0, with initial 
profiles obtained from similar solutions, and the solution is obtained by marching 
forward from 6 = 0 to E = 1. If a, is negative, the solution must begin at E = 1 and 
develop by marching toward E = 0. A close inspection of the coefficients c(E) and h(E), 
which are important in forming a, indicates that for case 1, near E = 0, a4 may be 
positive near the outer edge of the viscous layer and negative near the wall while 
sufficiently near = 1, a, is negative for all values of 7. For case (ii), the coefficient 
a, is positive for all values of 7 provided n 2 1. For n < 1, however, a, will be positive 
for all 7 for small 6, but for large E there is a region away from the wall in which 
a4 will be negative. For case (iii), the coefficient a, is positive (or zero) for all 7 
and 6. 

The existence of cases in which a, changes sign in the course of the solution causes 
considerable difficulty. In such cases, the problem is said to be 'singular parabolic'. 
Physically, the change in sign of a, indicates a change in the direction in which 
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FIGURE 1. Computational region showing molecule, available similar solutions, and boundary 

conditions. 

information is being transmitted. The classic case of this is the problem in which a 
finite plate is impulsively heated to a uniform temperature at time t = 0. This special 
case is imbedded in the set of solutions designated case (ii), i.e. problems in which 
the wall-temperature depends upon 2 alone. It is in fact the case of n = 0, i.e. uniform 
wall temperature. Other classic cases of such singular parabolic behaviour are the 
fluid dynamics of the impulsively started flat plate (Dennis 1972) and the impulsively 
started wedge (Williams t Rhyne 1980). These latter two problems were successfully 
solved using a scheme of forward differencing for a negative derivative and backward 
differencing when the sign of the f derivative is positive. However, this technique 
has not been successful in the classic case of free convection, which involves coupled 
equations, and which was attempted extensively by the present authors incorporating 
a solution technique presented by Carter (1974). Other authors have also attempted 
this problem, as mentioned previously, but all unsuccessfully and the difficulty has 
yet to be resolved. 

In  a large number of cases of transient free convection there is no change in sign 
of the f derivative during the course of the solution. Also, in those cases where a 
change in sign does occur, often the portion of the solution up to the change in sign 
is most important. Computations for these cases are presented here. Three-point 
backward f differences were used, starting at f = 0 or E = 1, depending on the sign 
of a4. The computational molecule is shown in figure 1. Using central differences in 
7 ,  the discretized equations become 

An, Wn*+l, ,,,I + Bn, W,,, m, + Cn, Wn*-l, m' = Rn*, (40) 

(41) AT,,, en+l, m, + BT,, en,, mp + CT,, ,,,# = RT,,, 
where 
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FIGURE 2. Illustration of two fundamental variations of wall temperature with position, 2 = x, 
and time, 2 = t .  

Equations (40) and (41)  were written as a system of tridiagonal matrix equations 
at each 6 station, and solved by a Thomas algorithm. The procedure was to assume 
T,I distributions for W and 8, obtain f from (36), and then compute the nonlinear 
coefficients. This step effectively linearizes and uncouples the equations. The coeffi- 
cients were then used in the Thomas algorithm to generate a new W and 8 profile, 
and the process repeated until convergence. Moving to the next i$ station, the entire 
process was repeated and the solution marched through E range. 

4. Results 
Solutions were developed numerically after the application of the semisimilar 

solution technique, with results generated for the following cases of wall-temperature 
variation 

AT, = [c,  t + c J ,  

AT, = k ,  ekZt, 

AT, = [ c 3 ~ + c 4 1 n ,  

AT, = k,  ekax, 

AT, = [cl  t+c,]" [ C , X + C ~ ] ~ ,  

AT, = k, ek,t+k,x. 

Since the constants c2 and c, have no real effect on the solutions, they were taken 
as zero. The constants c,, c3, k,, k,, k, and k, affect the solutions by degree only and 
not in character if they are positive and non-zero. These constants were set equal to 
unity, except in noted cases where the zero value was investigated. Figure 2 shows 
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-6 sample of the above wall-temperature profiles in terms of a variable 2 which may 
be replaced with x or t .  The wall temperatures varying with both z and t will, of course, 
be three-dimensional combinations of these profiles. 

The solutions presented are given primarily in terms of the conventional dimen- 
sionless ratio involving the local heat transfer coefficient versus the appropriate 6. 
This heat transfer grouping is defined as 

where 

and 

(49) 

All solutions presented are for Prandtl number equal to one except for one example 
showing the effect of different Prandtl numbers. 

4.1. Wall temperature varying with time 

For all cases of the time varying wall temperature, (42) and (43), the solutions were 
found to follow the analytic one-dimensional solutions for the doubly infinite flat plate 
given by Menold & Yang (1962), until the coefficient of the 6 derivative term, a4, 
changes sign. At this change of sign the solutions diverged. This change of sign 
indicates the entrance of an x dependence in the physical problem; that is, it  indicates 
the penetration distance of the leading-edge effect. Physically, the coefficient changes 
sign as the fluid from the region of the leading edge first reaches a given x position 
along the plate. 

Figure 3 shows the above result in the heat transfer grouping for several values 
of r. The termination points are compared with the penetration distance computa- 
tions by Mizukami (1977), and thus tend to verify the present results. The leading- 
edge effect introduces a singularity into the boundary-layer equations, and all 
attempts to solve past this point failed. Note that at least for values of r < 0, there 
will occur a minimum in the heat transfer coefficient. Also note that r = 0 is the 
impulsively heated constant-temperature flat plate. 

Physically, the following interpretation is given for this particular problem. The 
plate, initially at ambient temperature, begins to be heated with a wall temperature 
varying as a power of time. For short times or large x, the fluid near the plate behaves 
as if the plate were infinite in extent and the one-dimensional conduction solution 
applies. After a time, fluid from the leading edge reaches a given x position on the 
plate, introducing an x dependence to the flow. The fluid thus departs from the 
one-dimensional conduction solution. Near x = 0 or for long times, the flow about 
the plate is found to approach that of the steady-state constant-wall-temperature free 
convection case, regardless as to the exponent r .  The lower limit on the wall- 
temperature exponent, r ,  for physically meaningful solutions, is not clear. However, 
no results were computed for r < 0. 

Solutions for the exponential wall temperature, (43), were found to behave in the 
same manner as the previous case. The heating begins, however, at t = - co. The 
results are given in figure14. Finally, the cases of c1 = 0 in (42) and k2 = 0 in (43) were 
checked and found to be continuations of the steady solution valid at 6 = 0. 
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FIQURE 3.Variations of local heat transfer grouping for T, = t', showing limits of pure conduction 

and overshoot of steady state, 0,  Mitzukami 

FIGURE 4. Solution for wall temperature varying exponentially with time, AT, = et, showing 
the limit-of-pure-conduction without an overshoot. 0, Mitzukami. 

4.2. Wall temperature varying with position 

The impulsively heated plate is of considerable interest because the transient nature 
of the resulting free convection problem is displayed independently of the effects of 
varying wall temperature. Wall temperature given by (44) was considered first with 
results, in terms of the heat transfer grouping, given in figure 5 for various values 
of n. For values of n 2 1, complete solutions were obtained. These are believed to 
be the first accurate numerical solutions for the full transient free convection problem. 
All solutions for any value of n were found to exhibit a minimum in the heat transfer 
grouping, and the complete solutions clearly confirmed the existence of this minimum. 
Interestingly, the magnitude of this overshoot of the heat transfer coefficient reaches 
a minimum at n = 1. 

Only partial solutions were computed for n < 1. As for the previous caae, the soh- 
tion is found until the coefficient of the ,$ derivative term changes sign, thus causing 
the essential singularity. For n = 0 the solution for the impulsively heated constant 
temperature plate is recovered and follows the pure conductive solution exactly until 
the coefficient of the ,$ derivative changes sign, a point often referred to as the 'limit 
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FIQURE 5. Solutions for the local heat transfer grouping for AT, = x", showing overshoots for 
all values of n. 

FIQURE 6. Solution for the dimensionless surface heat flux, e ' ( O ) ,  for AT, = x" illustrating the 
expected pure conduction response for n = 0. 

of pure conduction' or 'penetration distance'. The penetration distance for n = 0 
predicted by Nanbu (1971) is also shown in figure 5 and is seen to coincide with the 
end of the calculated solution. The continuation of the one-dimensional conduction 
solution is shown by the dotted line in the figure. 

For other values of n, the conduction limit takes on a different meaning. Previously, 
since the wall temperature did not vary with x, i.e. AT&'), the leading-edge effect 
introduced the 2 dependence into the physical problem and thus defined the 
penetration distance and the limit-of-pure-conduction to be the same. This cannot 
be true, however, for the present case, except for n = 0. For n =I= 0 an x dependence 
enters the problem immediately at all positions on the plate, through the wall 
temperature. Indeed, for n 9 0 the solutions immediately depart from the one- 
dimensional conduction solution found to be valid at 6 = 0. A pure conductive phase 
of the transport, therefore, simply does not exist and the point of singularity can only 
be interpreted as the penetration distance of the leading-edge effect. 

Figures 6 and 7 more clearly show the departure from the one-dimensional 
conduction solution for n =I= 0, through both B'(7 = 0) and the dimensionless wall 
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FIQURE 7 .  Variation of the dimensionless wall shear, f”(O), with time for ATw = xn. 

FIGURE 8. Velocity profiles for ATw = z(n = i ) ,  showing a normal transient to a steady state. 

shear j”’(7 = 0). Again, the continuation of the one-dimensional conduction solution 
is shown as a dotted line in both figures. Sincef is a factor in the coefficient of the 
leading E derivative, a4, and since analytic solutions are not known for n $: 0, the 
penetration distance of the leading-edge effect can only be determined numerically, 
as the point a t  which this coefficient vanishes. 

Clearly, for n 2 1 the coefficient (a4) is positive for all E. This indicates that no 
leading-edge signal is propagated for n 2 1. Evidently the propagation of a leading- 
edge disturbance in the physical problem or the introduction of a singularity in the 
mathematical model is dependent upon the z derivative of the wall-temperature 
distribution a t  x = 0. If n 2 1 the slope of the wall temperature at  x = 0 is finite or 
zero, no singularity is introduced, and no disturbance is propagated along the plate. 
For n < 1 the slope is infinite at z = 0 and a singularity is introduced in the 
mathematical equations. It is noted that for the purely time-dependent wall 
temperatures considered in the previous section, there is a step change in wall 
temperature at x = 0 and thus a singularity is introduced in all cases. 

Referring again to figure 5 ,  an interesting observation is made for n = 0.5. The 
point at which the solution fails is past the position at which the flow has essentially 
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FIGIJRE 9. Temperature profiles for ATw = s(n = l ) ,  showing an overshoot in slope near the wall. 

FIGTJRE 10. Effect of Prandtl number on the variation of the heat transfer group with time for 
ATw = s(n = l ) ,  showing consistent overshoots throughout the intermediate range. 

reached its steady-state value. Thus, a t  least for values of n slightly less than one, 
the leading-edge effect appears to  have little or no physical influence on the solution, 
and certainly does not coincide with the minimum as has been suggested. 

The steady-state solutions valid a t  6 = 1 and shown in figures 5 , 6  and 7 are given 
by (28) and (29). The solutions to these equations were first numerically obtained by 
Sparrow & Gregg (1958). The heat transfer coefficients were compared with Sparrow 
& Gregg's published results and were found to match. The solution for the case of 
c3 = 0 in (44) is found to give a continuation of the one-dimensional conduction 
solution. 

Velocity profiles for n = 1 and several values of 6 are given in figure 8. No overshoot 
of the velocity profiles or boundary-layer thickness is found in this case. Figure 9 
shows the corresponding temperature profiles. Here i t  is seen that the slope of the 
temperature a t  E = 0.4 exceeds the steady state value from the wall through most 
of the boundary layer, and thus gives the overshoot observed in the heat transfer 
grouping. 

The case of n = 1 is again used in figure 10 to  show the effect of Prandtl number 
variation. Overshoots of the heat transfer are found for all Prandtl numbers 
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computed. As the Prandtl number decreases, the steady state is reached earlier, 
reflecting the quicker thermal response of lower Prandtl number fluids. 

= 1 when n > 1. The 
limit of E+ 1 corresponds to the two cases of x finite while t --f 00, and t finite while 
x+00. Steady state is represented by the former, and the downstream asymptote 
by the latter. In  going to the steady-state limit a solution is obtained in which 6 = 1, 
and r ]  = Hence, both 8 and f become functions which are independent of 
the physical time, t ,  and dependent only upon y and x, as expected. In going to the 
downstream limit, however, it must be kept in mind that at physical x = 00, 

AT, = 00, and r] = 00, which obviously has little physical significance. Hence, it is 
important that in going to this limit one considers a large but bounded x. For this 
case, it  is seen that E = 1 -exp ( - E )  and r ]  = ( y / 2 d )  ( E  exp (e)/(exp ( E ) -  l))i, where 
E = i-t~:(~-l). Hence, a t  large E it  is seen that 

An interesting result can be seen for the limiting case of 

E =  l+O(exp(-s)), 

r ]  = (+IJx+(~-~)) (1 + O(exp ( - E ) ) ,  

and that and r] both possess an unsteady behaviour for all x which weakens as x 
becomes large. For E 2 7, 5 is within approximately 0.1 % of unity and r ]  is within 
0.1 yo of its steady-state behaviour. Hence, E = 7 might be considered as a criterion 
to use in defining the x--t envelope of steady flow. At  larger values of 5 (for n > 1) 
the time, t ,  required for steady state is smaller, indicating that downstream locations 
establish a steady state more quickly than upstream locations. This is consistent with 
the shape of the AT, distribution in x for n > 1. 

The range of n for which physically significant free convection problems result is 
now considered. There appears to be no limitation on the values of positive 12. Sparrow 
t Gregg (1958) have considered the possible values of negative n for the steady-state 
case. They found that for n < -0.6, there is an infinite source of energy in the fluid 
at  the leading edge. The heat transfer coefficient becomes negative, indicating heat 
transfer to the wall even though F .  > Fa. This is, of course, not physically realistic. 
Additionally, for n < -0.8, no steady-state solution is found. Figure 5 illustrates 
these results for the transient case. Therefore, n = -0.6 is considered the lower limit 
for physically realistic results. 

The exponential wall-temperature variation, (45), is found to behave in a similar 
manner as the power of x case above. As explained previously, this case corresponds 
to a plate whose leading edge lies a t  x = - 00. The z derivative of the wall temperature 
in this case is zero at x = - 00, and thus no leading-edge singularity is introduced 
and a complete solution is computed. The heat transfer coefficient, however, is not 
properly formulated for this case. Therefore, only - Y(r] = 0) is plotted in figure 11. 
Temperature profiles are shown in figure 12 which verify an overshoot of the 
temperature in the boundary layer before the steady state is reached. 

4.3. Wall temperature varying with position and time 

Wall temperature described by (46) is considered first. Any number of combinations 
of n and r could be used in this case. All wall temperatures whose x derivatives are 
not infinite at  x = 0 yield complete solutions. As before, this is due to the introduction 
of a singularity in the equations if the slope of the wall temperature is infinite at  
x = 0. The results presented here are restricted to the particular case of n = 1 for 
various r values which are representative of the numerous complete solutions that 
can be obtained. 
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FIGURE 11. Complete solution for the dimensionless wall heat flux, O’(O), for the case ATw = ez, 
obtainable because of the absence of a leading-edge singularity at x = - m. 

FIGURE 12. Temperature profiles for ATw = ez, showing an overshoot in the boundary layer 
before steady state is reached even though no singularity is encountered 

Figure 13 gives the heat transfer coefficient for various values of r .  6 is independent 
of x for n = 1. These unsteady heat transfer profiles then occur simultaneously for 
all values of z. The heat transfer coefficient is seen to overshoot the long time value 
if -0.5 < r < 0. For r = -0.5 there is no heat transfer to the fluid initially. For 
r < - 0.5 the heat transfer coefficient is negative initially, indicating a physically 
unrealistic situation. 

Figure 14 shows clearly the solutions valid at the endpoints of f .  For f = 0 or 
t = 0 the one-dimensional conduction equations for time varying wall temperatures 
are valid and the solutions are independent of n. At f = 1 or t = co clearly steady-state 
type equations apply and solutions are independent of r .  

The case of the exponential wall temperature of (47) corresponds physically to a 
plate with the leading edge at z = - co. The z derivative of the wall temperature at 
x = 0 is zero, and thus a complete solution is obtained. Again the heat transfer 
grouping is not properly defined for this case and thus only O‘(7 = 0) is plotted in 
figure 15. This complete unsteady solution and the ones found in the previous 
paragraphs are the only such solutions in the literature, to the author’s knowledge. 
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FIGURE 13. Solutions for the local heat transfer grouping with AT, varying with both position 
and time, AT, = st'. 

FIQURE 14. Solutions for the dimensionless wall heat flux, 8'(0), for ATw = sir, illustrating 
solutions valid at the end points of 6.  

5. Conclusions 
The unsteady free convection from a vertical flat plate has been analysed using 

the method of semisimilar solutions, thus avoiding the numerical pitfalls which have 
plagued other investigators. An analytical procedure has been developed which 
requires only state-of-the-art numerical techniques, while restricting the form of the 
allowable boundary conditions. Nevertheless, i t  is shown that applying such a 
technique to this free convection problem not only provides much useful information 
about the physics of the flow phenomena and the classical unsteady flow anomalies, 
but also provides solutions which can function as important benchmarks in future 
computational approaches. The lack of such data is perhaps the reason completely 
numerical procedures have failed in the past. 

I n  the results i t  is shown that concepts such as the 'limit-of-pure-conduction' and 
'penetration distance ' must be used very carefully when variable wall temperatures 
are involved. The presumption that has been made for years is that  both of these 
are the same only cast in terms of different variables (time for the 'limit' and distance 
for the 'penetration'), and both correspond to the occurrence of the 'leading-edge 
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FIGURE 15. Solution for the dimensionless wall heat flux, O'(O), for the case ATw = et+%. 

singularity'. We now know that this is true only for the very special case of constant 
and uniform wall temperature. In  fact, we have shown that under some circumstances 
the 'overshoot' which has classically been related to the ' limit-of-pure-conduction ' 
and the 'penetration distance', and interpreted in light of the singularity, occurs in 
cases where no singularity is encountered. The problem is therefore much more 
complex than previously believed. 

The next step in studying this unsteady free convection should be to remove the 
boundary-layer approximations and attempt a computational solution in full 
formulation. Many of the numerical difficulties which we and others have encountered 
are believed to be due to the essential singularity in the equations which occurs, in 
principle, because of the exclusion of streamwise second derivatives. With the 
checkpoints presented in this paper, such an approach might be successful in filling 
in information which is not now available. 
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